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The three-dimensional magnetohydrodynamics of ac helicity injection
in the reversed field pinch
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ac magnetic helicity injection~also known as oscillating field current drive, OFCD! has been
proposed as a technique to sustain the plasma current in a reversed field pinch. The
three-dimensional, resistive magnetohydrodynamics computation is employed to examine the full
nonlinear dynamics of OFCD, including the behavior of plasma fluctuations and instabilities. The
three-dimensional results are also compared with one-dimensional classical and relaxed-state
modeling. In OFCD, helicity is injected by oscillating the toroidal and poloidal surface loop
voltages. This technique is able to sustain the plasma current, with the edge current mainly driven
directly by the OFCD-generated fields, and the core current driven by plasma fluctuations.
Fluctuations increase with OFCD, although the increase is concentrated mainly in one global, nearly
ideal, mode. ©2003 American Institute of Physics.@DOI: 10.1063/1.1555622#
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I. INTRODUCTION

Steady sustainment of the current in toroidal plasm
remains a challenge. For plasmas in which the current di
bution relaxes by internal processes, various techniq
known as magnetic helicity injection have been sugges
for current sustainment. In such techniques, the resistive
sipation of magnetic helicity~and plasma current! is bal-
anced by helicity injection, typically provided by voltage
applied at the plasma surface. Internal relaxation proce
are expected to enable current penetration to the core. In
present paper, we examine the detailed dynamics of ac h
ity injection in the reversed field pinch~RFP!, investigating
both the effectiveness of the current drive and the respo
of the fluctuations in the plasma.

Magnetic helicity,K, is a measure of the knottedness
the magnetic field lines, and is defined as

K5E A•B dv2fpfz , ~1!

where A is the magnetic vector potential and the integ
extends over the plasma volume. The second term repres
the linkage of toroidal flux within the plasma (fz) with po-
loidal flux (fp) that passes through the center of the tor
The second term is subtracted from the volume integral
required to maintain gauge invariance.1–3 The rate of change
of helicity for a resistive magnetohydrodynamic~MHD!
plasma is

]K

]t
52fzvz22E FB•ds22E E•B dv, ~2!

whereF is the electrostatic potential on the plasma surfa
andvz is the toroidal loop voltage. Any technique to susta
the plasma current must also maintain helicity constan
time. In the usual toroidal induction, as in a tokamak, helic
dissipation is balanced by the dc toroidal loop volta

a!Electronic mail: febrahimi@wisc.edu
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present in the first term on the right-hand side. In dc elec
static helicity injection helicity is maintained by the seco
term, which represents the intersection of a field line with
surface held at a constant electric potential. Electrostatic
licity injection has been studied experimentally
spheromaks4 and spherical tokamaks.5–7

In ac helicity injection the helicity is provided by osci
lating fields in the first term. In steady state,

f̂zv̂z5hE J•B dv, ~3!

where the overbar denotes a time average over a cycle o
oscillating fields,f̂z andv̂z ~the ‘‘hat’’ denotes an oscillating
quantity!. The oscillation in the poloidal flux is provided b
an oscillating surface toroidal loop voltage. Hence, if tor
dal and poloidal surface voltages are oscillated, with a
degree phase difference, then helicity is injected stead
even in the absence of a dc loop voltage. This technique
suggested by Bevir and Gray1 to sustain the current in an
RFP. It has also been referred to asF2Q pumping or oscil-
lating field current drive~OFCD!. We will here use the ac-
ronym OFCD. The technique was shown to demonstrat
small amount of current~about 5% of the total! in the
ZT40-M RFP,8 with a phase dependence in agreement w
theory. However, plasma–wall interactions generated by
oscillating plasma position precluded tests with larger vo
ages.

Considerations of helicity balance provide little inform
tion on the dynamics of the current drive. A somewhat mo
complete view is obtained through examination of the eff
of the applied voltages on the fields within the plasma, us
the mean-field parallel~to the cycle-averaged mean magne
field! Ohm’s law,

~V003B00! i1^Ṽ3B̃& i5hJi, ~4!

whereV00 andB00 are the oscillating velocity and magnet
fields with poloidal and toroidal mode numbersm5n50, Ṽ
© 2003 American Institute of Physics
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andB̃ are the fields withm, nÞ0, and^ & denotes an averag

over a magnetic surface@( ) i5( )•B̄/B, where B̄ is the
cycle-averaged mean~0,0! magnetic field#. We see that there
are two dynamo-like current drive terms on the left-ha
side, one arising from the one-dimensional oscillating fie
that occur at the OFCD frequency~the first term! and one
that arises from nonaxisymmetric plasma fluctuations
instabilities~the second term!. In the absence of fluctuation
~neglecting the second term!, a current is driven by the sym
metric, oscillating fields. The oscillating radial velocity com
bines with the oscillating magnetic field to produce a
current. This current is confined to within a classical resist
skin depth near the plasma surface, and decays to zero a
plasma center. It is a classical effect, although one tha
absent in a plasma without flow. Considering thatV005E00

3B/B2, the first term can also be written as(E00•B00)/B.
Hence, the classical OFCD effect can also be viewed a
time-averaged parallel component of the oscillating elec
field.

The OFCD technique relies upon magnetic fluctuatio
to relax the current density profile. Fluctuations are gen
ated by the OFCD-driven edge current~the first term on the
LHS!, that then generate current in the plasma core via
second term, the MHD dynamo. The original studies
OFCD assumed that the plasma relaxes to a Taylor st9

with Ji /B spatially constant.10 MHD computation in which
the fluctuations are treated as a hyperresistivity has b
used to treat the 1D behavior of the plasma with OFCD.11,12

Three-dimensional MHD computation has been used
study spheromak formation by helicity injection13 and to
model electrostatic helicity injection in tokamaks.14 The im-
plications for transport associated with helicity injectio
have also been investigated.15,16

In this paper we employ three-dimensional, resist
MHD computation to study the nonlinear dynamics
OFCD. This permits us to address two key questions: wha
the effectiveness of OFCD as a current drive technique
what is its effect on plasma fluctuations? The basic equat
are introduced in Sec. II. The classical OFCD effect, wh
occurs in the absence of fluctuations, is calculated in Sec
both through 1D computation and analytic quasilinear cal
lation. This calculation provides a benchmark to which t
additive effect of the fluctuations can be compared. The
fect of the fluctuations is considered first through a 1D
laxed state model, in which the effect of fluctuations is re
resented through an assumption that the plasma mainta
preferredJi /B profile. This calculation~Sec. IV! provides
predictions, including scaling of key quantities with Lu
dquist number, that can also be compared to the 3D com
tation. The full 3D results are presented in Sec. V, for Lu
dquist numbers of 105 and 53105. Investigation of the
cycle-averaged quantities reveals that the plasma cur
~and helicity! can indeed be sustained by OFCD. Examin
tion of the surface-averaged quantities throughout a cy
indicates that the plasma current oscillates substantially
though the magnitude of the oscillation decreases with L
dquist number. Plasma fluctuations increase significa
with OFCD; however the increase is concentrated mainly
Downloaded 04 Feb 2005 to 128.104.223.90. Redistribution subject to AIP
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a global mode that is nearly ideal~resonant at the extrem
plasma edge!. The core-resonant tearing modes are not
creased significantly. We summarize in Sec. VI.

II. BASIC EQUATIONS

To understand the dynamics of OFCD both the tear
fluctuations and the oscillation of the mean quantities sho
be studied. Therefore, we model OFCD using both 1D a
3D computations. We employ the 3D resistive MHD cod
DEBS,17 to solve the compressible resistive MHD equatio
in periodic cylindrical geometry,

]A

]t
5SV3B2hJ,

r
]V

]t
52SrV•¹V1SJ3B1n¹2V, ~5!

B5¹3A, J5¹3B,

where time and radius are normalized to the resistive di
sion timetR54pa2/c2h0 and the minor radiusa, velocity to
the Alfvén velocityVA , and magnetic fieldB to the magnetic
field on axisB0 . S5 tR /tA is the Lundquist number~where
tA5a/VA), and n is the viscosity coefficient, which mea
sures the ratio of characteristic viscosity to resistivity~the
magnetic Prandtl number!. The mass densityr is assumed to
be uniform in space and time. The resistivity profile has be
chosen to resemble the experimental profiles~increasing near
the plasma edge!, h5(119(r /a)20)2. Oscillating axial and
azimuthal electric fields are imposed at the wall,Êz

5«z sin(vt), Êu5«u sin(vt1p/2), where«z and «u are the
axial and azimuthal ac amplitudes, respectively. The osc
tion period is required to be long compared to the plas
relaxation time ~the hybrid tearing time scalethybrid

;AtRtA), and short compared to resistive diffusion timetR

(thybrid,tv,tR).11,12

III. ONE-DIMENSIONAL CLASSICAL PLASMAS

One-dimensional studies, in which all quantities depe
on radius only, are executed to examine plasma beha
with OFCD, but in the absence of nonsymmetric MHD flu
tuations. This allows us to evaluate the OFCD-driven c
rent, concentrated in the outer region of the plasma,
occurs in the absence of MHD relaxation. The 1D calcu
tions are useful for comparison to 3D computation to hig
light the additive effect of relaxation. In Sec. III A we displa
computational solution to the 1D MHD equations; Sec. III
contains an analytic quasilinear treatment for a simple
equilibrium.

A. One-dimensional computations

We employ the DEBS code with allu andz dependent
fluctuations suppressed. To study the linear dynamic
sponse of both the mean and oscillating fields, low oscil
ing field amplitudes have been imposed on a plasma tha
initially current free (Bu50, Bz5constant). The time-
averaged~over a cycle! magnetic field profiles in steady-sta
are shown in Fig. 1. The axial field is little affected by th
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



ld

on
sic
nt

io

ed

n-
8.
e

he
on-

le-
sma
e ef-
;

lds
gher

1001Phys. Plasmas, Vol. 10, No. 4, April 2003 The 3D MHD of ac helicity injection in the RFP
small oscillating fields. The alteration in the azimuthal fie
results from the cycle-averaged current density, shown
Fig. 2~a!. The current density is localized to the outer regi
of the plasma, penetrating a distance equal to the clas
skin depthd5(h/v)1/2. The time dependence of the curre
density throughout one cycle is shown in Fig. 2~b!. The os-
cillatory current density is similar to the classical penetrat

FIG. 1. Time-averaged profiles for axial and azimuthal magnetic fie
obtained in steady state from 1D computation («z51.0,«u50.1,v
5600tR

21 ,S5105).

FIG. 2. Radial profiles of~a! cycle-averaged parallel current density,Ji . ~b!
Parallel current density at different times during one cycle~1D low ampli-
tude computation!.
Downloaded 04 Feb 2005 to 128.104.223.90. Redistribution subject to AIP
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that occurs for a solid metal. However, the cycle-averag
component arises from the cycle-averaged term (V00

3B00) i , a dynamo-like effect due to the classically pe
etrating oscillatory fields, similar to that reported in Ref. 1
This effect is proportional to the helicity injection rat
(;«z«u /v), as seen in Fig. 3.

At high oscillating field amplitudes~about 10 times
larger!, the oscillatory behavior of the fields change. T
electric field contains both higher harmonics and subharm
ics ~low frequency! components, as seen in Figs. 4~a! and
4~b!. The subharmonic component yields a nonzero cyc
averaged electric field that decays toward zero as the pla
approaches steady state. The cycle-averaged dynamo-lik
fect (V003B00) i , increases with the helicity injection rate
however its structure remains unchanged~Fig. 5!.

,

FIG. 3. Cycle-averaged dynamo-like term(V003B00) i vs radius, for the 1D
computation. The oscillation frequencyv is 200tR

21 and 600tR
21 for the

solid and dashed lines, respectively. The solid line has three times hi

helicity injection rate. For both casesÊz51.0 sin(vt), Êu520.1 cos(vt),
S5105.

FIG. 4. ~a! Axial and ~b! azimuthal electric fields vs time at radiusr
50.89, respectively.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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B. Analytical calculation and quasilinear effects

From the 1D computation, we see that low amplitu
oscillating fields penetrate into the plasma with the OFC
frequency while both higher and lower frequencies are g
erated for higher amplitudes~large forcing amplitudes!. To
understand the time dependence of the fields, o
dimensional, linear, resistive MHD equations@Eq. ~5!# are
analytically solved in cylindrical geometry. The partial di
ferential equations are solved for uniform magnetic fieldB
5B0ẑ, ¹p50, no viscosity, with initial conditionsAz

1(r ,0)
5const, Au

1(r ,0)50 and boundary conditionsAz
1(a,t)

5(2«z0 /v)cos(vt), Au
1(a,t)5(2«u0 /v)sin(vt), where the

‘‘1’’ superscript denotes a linear oscillating quantity. Th
equations for the vector potential and velocity fields can
simplified as follows:

]A1

]t
5V13B2h¹3¹3A1, ~6!

r
]V1

]t
52¹~B•B1!. ~7!

Equations~6! and ~7! can be combined in the form o
axial and azimuthal vector potential (Az

1 , Au
1),

]Az
1

]t
5hS ]2Az

1

]r 2 1
1

r

]Az
1

]r D , ~8!

]2Au
1

]t2 5
S2B0

2

r F]2Au
1

]r 2 1
1

r

]Au
1

]r
2

Au
1

r 2 G1h
]

]t F]2Au
1

]r 2

1
1

r

]Au
1

]r
2

Au
1

r 2 G . ~9!

The normalization of the equations is similar to the o
used in Sec. II. The partial differential equation~PDE! with
nonhomogeneous boundary condition for the toroidal vec
potential @Eq. ~8!# represents a driven resistive diffusio
equation. The PDE for the poloidal vector potential@Eq. ~9!#
consists of Alfvén waves and resistively damped modes. T
Laplace transform method can be applied to Eqs.~8! and~9!.
The solution forAz

1 andBu
1 can be written as an expansion

eigenfunctions~Bessel functions!:

FIG. 5. Cycle-averaged dynamo effect(V003B00) i for high driving ampli-
tudes, 1D computation («z510.0,«u51.0,v5600tR

21 ,S5105).
Downloaded 04 Feb 2005 to 128.104.223.90. Redistribution subject to AIP
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Az
1~r ,t !5

2«z0

v
cos~vt !1 (

n51

`

bn~ t !J0~lnr !,

Bu
15 (

n51

`

lnbn~ t !J1~lnr !, ~10!

where

bn~ t !5an~v,vn!@vn sin~vt !2v cos~vt !

1v exp~2vnt !#,
~11!

an~v,vn!5
2«z0

lnvn

1

J1~ln!~v21~vn!2!
,

vn5hln
2 , and ln are the zeros ofJ0 . Here, we have as

sumed uniform density and resistivity profiles (r5h51).
The solution forBu

1 consists of an oscillating part at th
OFCD frequency and a transient decaying part@Fig. 6~a!#.
Equation~9! can be solved forAu

1 and subsequently forVr
1 as

follows:

Vr
1~r ,t !5 (

m51

`

Cm~ t !fm~r !, ~12!

where

FIG. 6. ~a! Bu
1 vs time at radius r /a50.8 («z051.0,«u050.1,v

5200.0tR
21 ,S5105). ~b! S(Vr

1Bu
1) vs radius calculated analytically in 1D

for the same parameter in Fig. 3~solid line!.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Cm~ t !5
2S«u0

~v22vm
2 !

F2vm cos~vt !

v
1

v cos~vmt !

vm
G ,

~13!

fm~r !5
1

J18~lm!
Flm

2

4
~J3~lmr !23J1~lmr !!

1
lm

2r
~J0~lmr !2J2~lmr !!2

J1~lmr !

r 2 G ,
vm5SB0 /Arlm , andlm are the zeros ofJ1 (B05r51).
The cycle-averaged (Vr

13Bu
1) effect can be obtained

from the analytical solutions, Vr
1(r ,t)3Bu

1(r ,t)
5(m51

` Cm(t)fm(r )3(n51
` lnbn(t)J1(lnr ). Figure 6~b!

shows S(Vr
1Bu

1) from the analytical calculations, whic
agrees with the 1D computation~Fig. 3!. The sharp edge
feature in Fig. 6~b! results from the uniform resistivity pro
file assumed in the analytical model and the absence of
cosity. In the 1D computation of (V003B00) i ~Sec. III A!, the
resistivity profile is exponential and the viscosity is finite.
high S, for arbitrary frequency and amplitudes, the seco
term cos(vmt) in Cm(t) @Eq. ~13!# represents high frequenc
oscillations. These high frequency oscillations are a
present in 1D computation~Sec. III A! for the field solutions
but dissipate at finite viscosity, and also dissipate due to
fluctuations in 3D computation.

To understand the time response of the plasma to la
oscillating amplitudes, the quasilinear effect is investiga
including f (r ,t)5Vr

1(r ,t)3Bu
1(r ,t), as an inhomogeneou

source to the homogeneous PDE forAz
1 . The 1D driven

diffusion equation plus the quasilinear term is solved num
cally using the Crank–Nicolson method. As shown in Fig
the time response is a combination of the OFCD frequen
higher harmonics and a lower frequency which arises fr
the product of the exponential decaying component and
oscillation. The inhomogeneous solution can be found a
lytically as well, by definingAz

1(r ,t)5(n51
` dn(t)J0(lnr ),

where nowdn(t) has a different time dependence, which a
the combination of the OFCD frequency, the harmoni
transient decaying solutions and the product of exponen
decaying and the oscillations, sin(2vt), sin((v6vm)t),
sin(vt)exp(2vnt), exp(2vnt).

FIG. 7. Bu at r /a50.65 ~dashed! and r /a50.94 ~solid! vs time, calculated
numerically for the 1D model with the quasilinear term.
Downloaded 04 Feb 2005 to 128.104.223.90. Redistribution subject to AIP
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Through the sin(vt)exp(2vnt) combinations in time, a
nonzero time-averaged electric field is generated mainly
high amplitudes when the contribution of the quasiline
term becomes important. This electric field decays slowly
a resistive diffusion time scale. A nonzero mean electric fi
is similarly seen in large amplitude 1D computations~Sec.
III A ! as well as the nonlinear 3D computations below. Ho
ever, this electric field becomes small as the plasma g
close to quasisteady state.

IV. ONE-DIMENSIONAL RELAXED-STATE PLASMA

Section III described the one-dimensional MHD plasm
response to an applied oscillating electric field in the lim
where the driven current diffuses classically. In this sect
we examine a different extreme, where turbulent diffusi
maintains a relaxed-state current profile at every instan
time. The distinctive feature of a relaxed-state plasma i
stationarym0J•B/B25l i(r ) profile shape, independent o
varying electrical boundary conditions. Small-scale fluctu
tions are assumed to provide a turbulent emf in just the ri
amount at each radius to maintain this preferredl i(r ) shape.
The zero-pressure limit of a fully relaxed plasma with
residual magnetic free energy is well known to bel i(r )
5constant, as described by Taylor.9 However, for the discus-
sion here,l i(r ) can be any partially relaxed profile which
nonuniform in space but stationary in time~with finite re-
sidual magnetic free energy!. Plasma pressure may also b
included for more realistic modeling if the pressure evoluti
is easily described, such as a constant-beta assumption.

An experimental plasma operating with sufficient
strong relaxation has a stationaryl i(r ) profile when aver-
aged over relaxation process cycling, but the shape is t
cally nonuniform. This behavior is also reproduced in 3
nonlinear MHD computation. Consequently relaxed-st
modeling on time scales slow compared to the relaxat
time t relax;AStA provides a way to predict plasma respon
to a prescribed electric field at the plasma surface, espec
when time-consuming nonlinear, three-dimensional MH
computation is impractical or impossible. Particularly impo
tant is the high-S limit which remains a challenge for com
putational MHD, yet accessible in experimental plasmas.
laxed state modeling also can be compared to the
computation.

We proceed in Sec. IV A with a description of the r
laxed state evolution model, including an example simu
tion of OFCD sustainment. Section IV B covers the scali
of the OFCD-induced current and field modulation amp
tudes for key parametersS, drive frequencyv, and the rela-
tive strengths of the axial and poloidal electric field amp
tudes. Section IV C describes the time and space depend
of the implied dynamo emf required to maintain a relaxe
state current profile throughout an OFCD cycle, a prelude
Sec. V.

A. Model for relaxed-state evolution

Despite implications for a complex, nonlinear, thre
dimensional evolution~the topic of Sec. V!, relaxed-state
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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plasmas are easy to model because the mean current is
scribed. The instantaneous one-dimensional~mean-field!
equilibrium is a solution of

¹3B5l i~r ,t !B1B3¹p/B2. ~14!

For a relaxed-state plasma, thel i profile has a stationary
shape, with the time and space dependencies separab
l i(r ,t)5l0(t)L i(r ). Only the amplitude varies in time in
this model, specified by the valuel0 at the magnetic axis
(r 50). The profile shapeL i(r ) is an input determined by
theory or experimental behavior, for example,L i(r )51 for
the fully relaxed state plasma. For results presented h
L i(r )512(r /a)4 is chosen to mimic experimental RF
plasmas~in particular MST current profiles averaged ov
the sawtooth relaxation cycle!. It also resembles the curren
profile obtained in 3D MHD computation. Finite diama
netic current is straightforwardly included in relaxed-sta
modeling if the pressure evolution can be specified~e.g.,
constant-beta assumption!. However, the zero-pressure lim
is adopted here to permit direct comparison with results
Secs. II and V. Sinceb!1, finite pressure typically intro-
duces small changes and does not substantially im
OFCD solutions.

The evolution of a relaxed-state plasma is fully det
mined by a global magnetic energy balance, with the m
netic field profiles given by Eq.~14!. From the Poynting
theorem, the magnetic energy balance for the total pla
volume can be written as

vzI z2vuI u5]W/]t1PV , ~15!

whereI z is the axial~toroidal! plasma current,I u is the po-
loidal current in the axial field magnet surrounding t
plasma,vz and vu are the one-turn axial and poloidal loo
voltages at the plasma surface respectively,]W/]t is the
rate-of-change of the magnetic~plus generally thermal! en-
ergy within the plasma volume, andPV is the Ohmic dissi-
pation within the plasma volume. Equation~15! resembles
the description of power flow in an electrical circuit, hen
this type of modeling is often dubbed zero dimensional. N
ertheless, a complete one-dimensional evolution of
plasma is described by Eqs.~14! and ~15! with l i(r ,t)
5l0(t)L i(r ), given specified values forvz(t) and vu(t).
With the normalizations described in Sec. II~except for time,
normalized instead totA), Eq. ~15! can be written in dimen-
sionless form as

]W

]l0

]l0

]t
52fzS a

R
Qvz2FvuD2S21PV , ~16!

whereQ5m0aIz /2fz andF5m0RIu /2fz are the pinch and
reversal values, respectively, commonly used normalizat
of the axial and poloidal current. The axial magnetic flux
fz . DimensionlessW, ]W/]l0 , F andQ are functions only
of l0 and the specifiedL i(r ). PV is additionally a function
of the normalized resistivity profile, assumed stationary
this model. For comparison with the results in Secs. II and
the same resistivity profileh(r )5h(0)@119(r /a)20#2 is
used.

To create an OFCD simulation, the drive frequency, a
plitudes, and relative phase of the loop voltages~set for
Downloaded 04 Feb 2005 to 128.104.223.90. Redistribution subject to AIP
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maximum helicity injection! must be specified, as well a
dimensionless parametersS and R/a ~cylinder length
52pR). Keeping in mind thatvu52]fz /]t, Eq. ~16! is
easily solved forl0(t), from which the magnetic equilib-
rium evolution follows. For results here, fourth-ord
Runge–Kutta integration with 100 time steps per OFCD
riod is used to time-advance the solution.

In stark contrast to the results in the preceding secti
OFCD sustainment of a dc current with relatively small s
perposed ac modulation occurs when the plasma maintai
relaxed state, as illustrated in Fig. 8~a!. This relaxed-state
simulation has the same set of parameters used in theS55
3105 3D nonlinear MHD simulations described in Sec. V
below ~see Fig. 32 for reference!. The peak-to-peak axia
current modulation is;30%, while the poloidal curren
modulation is yet larger. TheF2Q trajectory during an
OFCD cycle is shown in Fig. 8~b!. This trajectory is con-
strained to a well-defined curve unique to the choice
L i(r ). The 3D simulations in Sec. V display somewh
larger ac modulation amplitude and a more complicatedF
2Q limit cycle that circles near the relaxed-state curve. T
frequency for this set of parameters is probably near
maximum allowable relative to the relaxation time sca
(vAtRtA51.56).

The data presented in the next section describe the s
ing of the ac modulation amplitude. These data were c
lected from relaxed-state simulations similar to that shown
Fig. 8 but with parameters varied to expose the param
dependence. In each simulation the surface loop voltage
plitudes are adjusted to produce a constant time-ave
axial current and a specified maximum value for the reve
parameter during the OFCD cycle~usuallyF520.1).

B. Scaling of the ac modulation amplitudes

In order for OFCD to have practical value, it is nece
sary that the ac modulation amplitudes of the currents
relatively small. It is therefore important to understand ho
the modulation amplitudes vary with Lundquist numberS,
the drive frequencyv, aspect ratioR/a, and the relative
amplitudes of the axial and poloidal loop voltages. F
relaxed-state modeling, the scaling of the modulation am
tudes with these parameters is straightforwardly obtained
varying each individually, holding the others fixed. The r

FIG. 8. ~a! Axial and poloidal currents for an OFCD-sustained relaxed-st
plasma withS553105, v52.853103tA , R/a51.66, and relative loop
voltage amplitudesv̂z514.5v̂u . The F2Q trajectory is shown in~b! rela-
tive to fully relaxed equilibria, for whichL51 ~dotted–dashed curve!. The
parameters for this relaxed-state case are identical to the high-S 3D MHD
study in Sec. V B below, with the surface voltages adjusted to produce
same maximumF50.1. See Fig. 32.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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sults of this scaling analysis are reported in this section.
ac modulation that occurs for a relaxed-state plasma p
ably represents the lower bound for any real plasma. In S
V below, 3D nonlinear MHD analysis demonstrates OFC
with modulation amplitude larger than for a relaxed state,
not grossly larger. Most importantly, sufficient relaxation o
curs in the 3D analysis. This is not an obvious outcome
bolsters reliability in the scaling predictions from much sim
pler relaxed-state modeling.

The scaling of the axial current modulation is large
controlled by the plasma’s unavoidable inductive reaction
an oscillating electric field. The axial loop voltage requir
for OFCD is substantially larger than the resistive dc volta
which would sustain the same time-average current. From
Ohm’s law perspective, the voltage is dominantly induct
vz.L dIz /dt. Since the~toroidal! inductanceL.m0R, the
relationship between the ac amplitude of the axial curre
Î z , and the applied axial loop voltage amplitude,v̂z , is
roughly v̂z.m0Rv Î z ~the ‘‘hat’’ refers to the ac amplitude!.
A simple prediction for the scaling of the axial current mod
lation Î z is formed by inserting the inductive response es
mate for the loop voltage into a helicity balance. Equat
the time-average ac helicity injection rate in OFCD to t
steady-induction helicity injection rate yields

v̂zv̂u

2v
5vVf̂z5

h~0!R

a2 f V Ī zf̄z , ~17!

wherevV is the steady-induction~resistive! loop voltage and
f V is a form factor for the plasma resistance, essentially c
stant in this analysis. The overbar indicates a time-aver
~i.e., cycle-average! mean value. Insertingv̂z5m0Rv Î z and
definingj5 v̂z / v̂u ,

S Î z

Ī z

D 2

.
f V

Q̄
j

a

R

1

vtR

. ~18!

The frequency is best normalized to the hybrid tim
vAtAtR5Vmhd, with Vmhd,1 the expected upper boun
requirement to permit sufficient relaxation over an OFC
cycle. By these simple arguments, the fractional ac mod
tion amplitude is predicted to scale as

Î z / Ī z;S21/4Vmhd
21/2j1/2~R/a!21/2. ~19!

A similar argument for the poloidal current modulation is n
easily identified, although its scaling is equally importa
For example,~empirically! the loss of axial field reversa
typically causes an RFP plasma to become unstable and
be avoided in operation.

The scaling of the modulation amplitudes with the lo
voltage ratioj is shown in Fig. 9. The data points represen
set of OFCD simulations, each with constant time-aver
current~but slightly different values!. All of the key param-
eters are the same in each simulation, except forj. The fixed
parameter values are listed in the figure caption. Since
poloidal current modulation varies considerably, the am
tudes of the loop voltages are adjusted in each simulatio
keep the maximum value ofF520.1. This guarantees th
simulation has a reversed axial field at all times, as close
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possible to normal experimental RFP conditions. This g
eral procedure is repeated below, varying the other par
eters.

Although the axial current modulation approaches
expectedj1/2 dependence only at largej in Fig. 9~a!, this
scaling is shown first because the poloidal curre
modulation—represented by theF modulation in Fig.
9~b!—is minimum atj;10, increasing rapidly at lowerj.
Small j ~or large«u) corresponds to a large driven toroid
field modulation. To help maintain axial field reversal,j
510 is chosen as the optimal loop voltage ratio. The sh
increase in the poloidal current modulation at smallj prob-
ably spoils thej1/2 scaling in the axial current modulation
coupling between the axial and poloidal fields is not a
counted for in the derivation of Eq.~19!.

The scaling of the axial current modulation with Lun
dquist number,S, is shown in Fig. 10~a!, which fits very well
the expectedS21/4 dependence, except at lowS where the
modulation amplitude is largest. If OFCD is compatible wi
plasma confinement requirements, the current modulatio
fusion reactor parameters is only a few percent. For this r
son, the TITAN RFP reactor studies19 employed OFCD for
current sustainment. Whether or not the required relaxa
turbulence adversely impacts energy confinement is a m
uncertainty in the viability of OFCD for fusion application

The poloidal current modulation dependence onS is
shown in Fig. 10~b!, again represented byF. The modulation
increases sharply at lowS, which probably defines the mos
severe constraint on successful demonstration of OF
both theoretically and experimentally. When the plasma
sistance is high, the required voltage to sustain the curre

FIG. 9. Amplitudes of the~a! fractional rms axial current modulation an
~b! peak-to-peak reversal parameterF modulation for varying oscillator am-
plitude ratio j5 v̂z / v̂u . Fixed parameters areS553107, Vmhd51, and
R/a53. Note minimumdFp2p at j;10.

FIG. 10. ~a! The fractional rms axial current modulation amplitude and~b!
the reversal parameter variation as a function ofS. Fixed parameters arej
510, Vmhd51, andR/a53. The triangles in~b! are the time-average mean
F, while the squares on dotted curves are theF-oscillation extremes. The
loop voltages are adjusted to produce maximumF.20.1 in all cases.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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high, which in turn produces excessive poloidal curre
modulation, even for the optimal loop voltage ratioj510
and maximum allowable frequencyVmhd51. Very little ex-
perimental RFP operation occurs withuFu.1. In practice,
OFCD cannot be expected viable withS<106, a relatively
high limit. However, at reactor parameters, the poloidal c
rent modulation is reasonable, and only now with the pres
generation of RFP experiments ata;0.5 m andS.106 can
tests of total current sustainment by OFCD be contempla

The scaling of the modulation amplitudes withVmhd and
R/a are shown in Fig. 11. The frequency scaling is as
pected, whereas the aspect ratio scaling is not. Coupling
tween the poloidal and axial fields most likely causes
scaling to diverge from (R/a)21/2, as with thej scaling. The
toroidal and poloidal current modulation amplitudes incre
and decrease together when changingS or Vmhd, hence their
scalings are probably less sensitive to cross-field couplin

C. Dynamo implications for an OFCD relaxed state

Although relaxed-state modeling does not provide a
croscopic description of the relaxation mechanism, it d
quantify the profile and time dependence of the emf requ
in Ohm’s law to maintain a relaxed state. A comparison w
steady induction provides insight into anticipated differen
in the dynamo between OFCD and steady induction, the l
having a well-developed understanding in 3D nonline
MHD.

To maintain a relaxed-state, in general parallel Ohm
law must include an emf,Ei , which balances the differenc
between the parallel inductive electric field and resistive d

hJi2Ei5Ei . ~20!

The detailed workings ofEi in 3D MHD is a topic in Sec. V
below. In relaxed-state modeling, the radial profiles ofEi

5(V003B00) i and hJi are known, shown in Fig. 12~a! for
both OFCD and steady induction.~The profiles are cycle
averaged in the OFCD case.! The difference between thes
profiles impliesEi . Steady induction and OFCD requireEi

with essentially opposite radial structure. In steady inducti
most of the current is everywhere provided by the appl
electric field except in the edge where the axial magn
field is small. In OFCD, the time-averageEi is zero at the
magnetic axis~whereEi5Ez) and maximum at the plasm
surface. Consequently relaxation must support current in

FIG. 11. The fractional rms axial current modulation for varying~a! fre-
quency and~b! aspect ratio. Fixed parameters areS553107, j510, R/a
53 ~for frequency scan!, andVmhd51 ~for aspect ratio scan!. The dotted
curve in ~b! is the peak-to-peakF-oscillation representing the poloidal cu
rent modulation (420 only for illustration!.
Downloaded 04 Feb 2005 to 128.104.223.90. Redistribution subject to AIP
t

-
nt

d.

-
e-
e

e

.

i-
s
d

s
er
r

s

g

,
d
ic

e

core rather than the edge. Moreover, the mismatch betw
Ei andhJi is larger in OFCD, as shown in Fig. 12~b!. This is
important becauseEi is composed of turbulent quantities—
specifically Ṽ3B̃ in MHD—which can negatively impac
plasma confinement. A largeruEiu implies larger fluctuation
amplitudes. TheS scaling of the fluctuation amplitudes i
therefore critical in determining the consistency of relaxat
and fusion plasma confinement. For steady induction,
scaling is not particularly optimistic in either experiment20 or
3D MHD computation.21,22 In principle OFCD could scale
differently, perhaps more favorably.

Hybrid current sustainment—combining partial stea
induction with partial OFCD—provides an intriguing poss
bility for current profile control to minimizeEi . Steady in-
duction would support the core current while OFCD wou
support the edge current. Relaxed-state modeling indic
the time-averageEi is minimal across the radius when th
supplied power is roughly equally split between steady
duction and OFCD. However, the rmsEi shown in Fig. 12~b!
remains relatively large due to large positive-to-negat
swings during the OFCD cycle. At two times in each cyc
the instantaneous magnitude ofuEiu peaks at values up to
;5 – 10 times larger than the cycle-averageEi . This behav-
ior stems from the large loop voltage which is dominan
inductive. Nevertheless hybrid sustainment will be intere
ing to investigate in 3D MHD where the detailed relaxati
process could lessen these extremes.

V. THREE-DIMENSIONAL COMPUTATION

The complete dynamics of OFCD are studied using
3D, nonlinear, resistive MHD DEBS code. In the 3D sim
lations the tearing fluctuations are present as well as the
cillations of the symmetric quantities. We employ an asp
ratio ~cylinder length to radius divided by 2p! of 1.66. The
number of dominant spatial Fourier modes in the RFP sc
with aspect ratio (n;2R/a). Hence, computation at low as
pect ratio permits the essential physics to be explored w
fewer Fourier modes need to be evolved.23 We examine
OFCD at two different Lundquist numbers, 105 and 5
3105. An assessment of OFCD requires information on sc
ing with Lundquist number; for example, it is expected th

FIG. 12. ~a! The parallel electric field profiles for OFCD~cycle averaged!
and steady toroidal induction for the same parameters as in Fig. 8. ThehJi

profile ~dotted–dashed curve! is identical for both types of current sustain
ment, i.e., the OFCD time-average current equals the steady-inductio
current in this comparison. The implied rms time-average dynamo pro
(Ei5hJi2Ei) are shown in~b!. For OFCD, the rmsEi is larger than its
straight time-average sinceEi oscillates with large positive-to-negative ex
tremes.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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the oscillation of the total plasma current will decrease w
S, as indicated by the relaxed state model of Sec. IV.

For both values of Lundquist number, we first evolve t
plasma to a steady state in the absence of OFCD. This s
dard RFP plasma~at pinch parameterQ51.8) is evolved in
the presence of a constant boundary axial electric fi
@Ez(a)5constant#. It then forms the target plasma fo
OFCD. The radial profiles for this standard, relaxed plas
are shown in Fig. 13, which displays the parallel compone
of the current, electric field, and dynamo effect generated
tearing modes. As is well known, the tearing modes ess
tially transfer current from the core to the edge, to coun
the peaking of the current by the applied electric field.

At some time during the steady-state phase of
plasma, the time-independent axial electric field is set
zero, and the oscillating poloidal and toroidal electric fie
that constitute OFCD are applied. We first examine the ef
on the total current and magnetic helicity. We then exam

FIG. 13. Radial profiles of the three terms in parallel Ohm’s law,Ei

1S^Ṽ3B̃& i5hJi for a standard RFP plasma. The dynamo term inclu
contribution from them50 andm51 tearing modes for all the axial mod
numbers,n (S5105).

FIG. 14. Total axial current vs time. The oscillating fieldsÊz580 sin(vt),

Êu58 sin(vt1p/2) are applied att50.24tR (tv51.053103tA). The bold
points indicate the cycle-averaged current. The dashed line is the expo
tially decaying current that occurs in the absence of OFCD@Ez(a) set to
zero att50.24tR].
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the cycle-averaged terms in Ohm’s law, including the tw
dynamo effects—one arising from the spatially mean fie
~V andB! oscillating at the OFCD frequency and one fro
the tearing fluctuations. For a most detailed analysis, we t
investigate the behavior of each of the terms in Ohm’s la
and the magnetic fluctuation spectrum, through an OF
cycle. We discuss the results atS5105 in Sec. V A andS
553105 in Sec. V B.

A. SÄ105

The target plasma for OFCD, shown in Fig. 13, w
computed with 147 radial mesh points, poloidal mode nu
bers m50 – 5, and axial mode numbersn5221– 21. The
target plasma was sustained atQ51.8 with a helicity injec-
tion rateK̇5fzvz550. If the axial electric field is suddenly
set to zero~at t50.24tR in Fig. 14! then the current decay
in a fraction of a resistive diffusion time~the dashed curve!.
To study OFCD, att50.24tR we impose boundary condi
tions Êz580 sin(vt), Êu58 sin(vt1p/2). This provides a
helicity injection rate ofv̂zv̂u/2v535. which is lower than
the helicity injection rate of the target. As seen in Fig.
OFCD sustains the cycle-averaged current at about 2/3 o
initial value. However, the oscillations in the current a
greater than 100%, causing the current to reverse direct

s

en-

FIG. 15. Total axial plasma current vs time for«z5112, «u511, tv

51.053103tA , S5105. When plasma reaches quasisteady state, the cy
averaged current,I z52 is shown by the solid trace.

FIG. 16. Helicity vs time. The solid line with points shows the cycl
averaged helicity.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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If the OFCD helicity injection rate is increased, th
cycle-averaged current increases and the relative oscillat
decrease. We observe in Fig. 15 that if the OFCD helic
injection rate is doubled, then the cycle-averaged curren
creases by 20% and the current oscillations decrease by 1
The cycle-averaged helicity is also seen to be sustained~Fig.
16!. However, the helicity reaches a value that is less t
the initial ~by about 30%!, despite the fact that the OFCD
helicity injection rate exceeds that of the target plasma~by
about 35%!. This implies that the total helicity dissipatio
rate h*J"B dv'67, including both symmetric oscillation
and asymmetric fluctuation contributions, increases w
OFCD~Fig. 17!. The two helicity dissipation rates are show
in Fig. 17~b!. In a steady-inductive RFP surrounded by
close-fitting conducting shell, the time-averaged helicity d
sipation due to the tearing fluctuations is negligible. As it
seen in Fig. 17~b! the tearing fluctuating part of the helicit
dissipation increases with OFCD~shown by the thicker line!,
resulting in a cycle-averaged value of a few percent of
total helicity dissipation rate. Axial current~Fig. 15! de-
creases when the helicity dissipation due to the tearing fl
tuations increases. Due to the nonlinear plasma respo
both the axial current and the helicity dissipation rate are
sinusoidal in time~Figs. 15 and 17!. The sudden rise of the

FIG. 17. ~a! Total helicity dissipation rate,K̇diss5h*J•B dv vs time. The
solid line is the helicity dissipation before OFCD~about 50!. The bold
points show the cycle-averaged total helicity dissipation rate, which
steady-state balances the OFCD helicity injection rate,h*J•B dv'67. ~b!
The two terms contributing to the total helicity dissipation rate, the symm

ric mean parth*J00•B00 dv. and the asymmetric fluctuating parth* J̃

•B̃ dv (m, nÞ0) are shown. The thicker line indicates the fluctuating pa

FIG. 18. F2Q trajectories for two different periods.~a! tv51000tA , ~b!
tv51500tA , (S5105), wheretv52p/v.
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helicity dissipation~Fig. 17! indicates large changes in th
mean profiles during a cycle.

The choice of frequency is important for efficient curre
drive. The frequency should be low enough that edge cur
can be transported by the tearing fluctuations into the pla
core, but high enough to avoid change of direction of t
total plasma current through a cycle. A frequency scan fo

t

t-

.

FIG. 19. F2Q trajectories for«z«u /v52.1 ~dashed! and «z«u /v52.7
~solid!. The driving frequency is the same for the two cases. The toro
field is more deeply reversed for higher helicity injection.

FIG. 20. ~a! Helicity and~b! axial current vs time when phase between ax
and poloidal oscillating fields is set to zero (d50). The decay ofK andI z ,
when ohmic axial electric field is set to zero~without OFCD! are shown
with the dashed line. The bold points are the cycle-averaged quantities~with
OFCD!.
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given Lundquist number would therefore be of intere
However it is presently infeasible due to the long compu
tional time required. At low frequency, when the driving p
riod is much longer than the plasma relaxation time scale,
plasma current~andQ! changes sign~Fig. 18!. Whether the
plasma maintains the reversal during the OFCD cycle

FIG. 21. Parallel current density at two different times during a cycle
maximum~solid line! and minimumQ ~dashed line!. «z5112, «u511, and
tv51.053103tA .

FIG. 22. ~a! Cycle-averagedl5Ji /B and ~b! cycle-averaged parallel cur
rent density,Ji , profile without OFCD~dashed! and with OFCD~solid!.
Since the total current is smaller with OFCD~see Fig. 15!, Ji is smaller as
well.
Downloaded 04 Feb 2005 to 128.104.223.90. Redistribution subject to AIP
.
-

e

-

pends upon the ratio of the poloidal and toroidal oscillati
amplitudes. At higher helicity injection rates and«u /«z in
the range of 10–15 %, the toroidal field reversal parame
F, is less positive and plasma maintains the reversal~Fig.
19!.

According to the helicity balance equation, the pha
between the axial and poloidal voltages for maximal helic
injection is d5p/2 ~Sec. I!. We have also examinedd50
andd52p/2. Figure 20 shows that both the cycle-averag
helicity and the cycle-averaged current decay to zero as
pected whend50. The dashed line in Fig. 20 shows helici
and current when the axial electric field is set to zero~no
OFCD! and the solid line with bold points indicates th
cycle-averaged current with OFCD withd50. The OFCD
cycle-averaged current decays faster than the ohmic cur
~dashed line!. The opposite phase (d52p/2) leads to helic-
ity ejection and cycle-averaged helicity and current dec
more rapidly during the early cycles.

A large time variation of the parallel current density,Ji ,
occurs during an OFCD cycle, shown in Fig. 21 for ma
mum and minimumQ. Current density is peaked in the in
terior of the plasma whenQ is maximum andF is most

tFIG. 23. Cycle-averaged dynamo terms~a! from symmetric oscillations

(V003B00) i and ~b! from the asymmetric tearing dynamo terms^Ṽ3B̃& i .

FIG. 24. Modal magnetic energy (Wm,n51/2*B̃r (m,n)
2 d3r ) vs time for a

standard RFP. The~1,24! and~1,23! modes are the most dominant tearin
modes (S5105, R/a51.66).
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negative. The OFCD period is in the range of the hyb
tearing time; thus, the current penetrates to the interior of
plasma. The cycle-averagedl(r ) profile is shown in Fig. 22.
Nonzero parallel current density on axis is evidence of
penetration of edge current into the core through the tea
mode dynamo effect. The time-averagedl andJi profiles of
the standard RFP plasma are also shown.

The dynamics of this current relaxation can be inve
gated by analyzing the dynamo terms@from both the sym-
metric oscillations (V003B00) i and the tearing fluctuation

^Ṽ3B̃& i] in the cycle-averaged parallel Ohm’s law. As e

FIG. 25. Time histories of magnetic energy,Wm,n51/2*B̃r (m,n)
2 d3r for the

dominant tearing modes, (m,n)5(1,12),(1,23),(1,24),(1,22) in an
OFCD-sustained plasma. The edge resonant modem51, n512, is excited
by the oscillating fields and has the largest amplitude.

FIG. 26. Them51, n512 energy terms~integrated over radius! of Eq.
~21! vs time. The total energy~LHS! is shown by the solid line. The dia
monds show the sum of the linear energy terms in the RHS. The gro
period where the total energy~LHS! and linear energy~RHS! overlap, is
marked by the shaded area.
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pected, the oscillations drive only a cycle-averaged edge
rent @Fig. 23~a!#. The core current is sustained by the teari
dynamo@Fig. 23~b!#.

During one cycle, the plasma is driven to a state which
far from relaxed, with significant effect on fluctuations.
the standard RFP the current density is controlled by the c
tearing modes, resonant within the reversal surface, w
mode numbersm51, n522 to 210, as shown in Fig. 24
The oscillating fields of OFCD broaden theq profile and
excite additional modes. Edge modes, resonant outside
reversal surface, withm51, n52, are excited, as well a
additional core modes withn51, n522, as shown in Fig.
25. The edge-resonant mode develops the largest amplit

The edge modes become resonant as the reversal d
ens through a cycle, withF reaching 22. To determine
whether this mode is linearly unstable or nonlinearly driv
we compute the linear drive terms in the equation

1

2

]B1
2

]t
5SB1* @~B0•¹!V12~V1•¹!B0#1¯, ~21!

where the ‘‘1’’ subscript indicates a perturbedm51, n52
quantity and a ‘‘0’’ subscript indicates a mean~0,0! quantity.
We compute the volume integral of the LHS and RHS of E
~21!. We observe that during the sudden growth phase,
two terms are equal~Fig. 26!. Thus, the growth ofm51, n
52 mode is a linear instability and nonlinearity only affec

th

FIG. 27. Profiles of the equilibrium magnetic fields,Bz and Bu , and q
profile for the linear calculation of them51, n512 edge-resonant mode

FIG. 28. Linear radial eigenfunctions of them51, n512 mode.
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1011Phys. Plasmas, Vol. 10, No. 4, April 2003 The 3D MHD of ac helicity injection in the RFP
the saturation and damping of this mode. A linear resist
MHD stability analysis has also been performed to obtain
growth rate and spatial structure of this mode. Linear evo
tion of the mode is studied using the DEBS code~with all
other modes suppressed!. Equilibrium profiles are chosen t
resemble those of the deeply reversed phase of OFCD~Fig.
27!. The global eigenfunctions of them51,n512 mode are
shown in Fig. 28. The growth rate of the mode,gtA50.1, is
in the range expected for ideal MHD instability.

The plasma experiences two phases of the magnetic
tuations, the helicity injection and ejection phases~Fig. 29!.
In the helicity injection phase (K̇.0), the total plasma cur
rent ~or Q! increases and core fluctuations transport e
current into the core. In the helicity ejection phase,Q de-

FIG. 29. Time histories of helicityK, reversal parameterF, pinch param-

eterQ, and magnetic fluctuationB̃/B (S5105).
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creases, and the global edge-resonant modes suppres
current density everywhere. Thel profiles at different times
during one cycle, marked by the vertical lines in Fig. 29, a
shown in Fig. 30. The first three profiles~a!–~c! are during
the helicity ejection phase, while~d!–~f! show thel profiles
during the injection phase. As is seen, thel profile varies
from hollow ~during the ejection phase! to peaked~during
the injection phase! within a cycle. Radial dynamo profile
during a cycle can provide better understanding of the c
rent relaxation process from edge to the core region. Fig
31 illustrates the surface average dynamo term of the do
nant core modes,m51,n522,23,24,25, at different
times marked by the vertical lines in Fig. 29. As seen,

average thêṼ3B̃& i term suppresses current in the core
gion during the ejection phase@Figs. 31~a! and 31~b!# and
drives current on axis during the injection phase@Figs. 31~e!
and 31~f!#.

B. SÄ5Ã105

Although OFCD is able to sustain the plasma curren
S5105, the current oscillations are large. The relaxed st
model of Sec. IV predicts that the current oscillations d
crease with Lundquist number. To investigate the effect
higher Lundquist number on current oscillations and m
netic fluctuations, we have performed a computation aS
553105. We have employed higher spatial resolution~260
radial mesh points, 0<m<5 and241<n<41) to allow for
more localized features that accompany higherS values.
Ohmic helicity injection is replaced by OFCD att50.035
tR , as shown in Fig. 32~a!. The current is sustained and th
FIG. 30. l profiles for different times during one cycle~for times marked with vertical lines in Fig. 29!.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 31. Profiles of the surface-averaged dynamo,(m51,n^Ṽ3B̃& i including n522,23,24,25, at different times during one cycle~times marked with
vertical lines in Fig. 29!.
o

l f
ur-

ore
s,

y-
the
the
en-

-
m

le.
oscillations are indeed reduced by about 50% relative tS
5105. The correspondingF2Q trajectory is shown in Fig.
32~b!, where it is seen that the plasma maintains reversa
most of the cycle.

FIG. 32. ~a! Toroidal plasma currentI z , and~b! F2Q trajectory for OFCD-
sustained plasma atS553105 («z5140, «u516, andtv52.853103tA).
The F2Q limit cycle is shown by the solid curve.
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The cycle-averagedl profile is shown in Fig. 33. For the
same helicity injection rate, the cycle-averaged parallel c
rent density on axis is higher than theS5105 case, indicating
that current penetrates more effectively into the plasma c
at higherS. Similar to theS5105 case, there are two phase
the helicity injection~current drive phase! and helicity ejec-
tion phase. In the helicity injection phase, the positive d
namo term from the core tearing fluctuations, transfers
edge current into the core. Because of the excitation of
edge-resonant modes, magnetic fluctuations level are
hanced~about the same level ofS5105 case! during the
ejection phase. Thel profiles during the injection and ejec
tion phases are shown in Fig. 34. This profile varies fro
hollow ~during the ejection phase! to peaked~during the in-
jection phase! within a cycle.

Figures 35~a!–35~d! illustrates them51 magnetic en-
ergy spectrum, at different times during the OFCD cyc
The correspondingq profiles are shown in Figs. 36~a!–36~d!,

FIG. 33. Radial profile of cycle averagedl (S553105).
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FIG. 34. l profiles at four different times during OFCD cycle~ejection and injection phases!, S553105.
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including the cycle-averagedq profile ~shown by the thicker
line! for comparison. The dominant core modesm51,n
523,24,25,26 can be seen in Fig. 35~a! with the mag-
netic fluctuation level about 0.1–2 %. This spectrum is
typical spectrum during the maximum current drive, ma
mum Q, and is similar to the standard inductive RFP sp

FIG. 35. The evolution of magnetic energyWm51,n51/2*Br ,(m51,n)
2 d3r ,

spectrum during OFCD cycle (S553105). The dominant (m,n) modes
have also been specified.
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trum. Theq profile at this time is shown in Fig. 36~a!. As
discussed earlier, when the plasma reversal starts to dee
edge-resonant modes become linearly unstable and the d
nant modes move toward the positive part of the spectr
The q profile on the edge becomes more negative@Fig.
36~b!#. The linearly growingm51, n512 mode is seen in
Fig. 35~b!. This figure shows the magnetic spectrum duri
the growth of edge-resonant mode fluctuations. At this ti
them51, n512 fluctuation level is about 10% and the co
mode (m51,n523,24,25,26) fluctuation level is about
0.1–1 %. It can also been seen in Fig. 35~c! that the ampli-
tudes of other edge-resonant modesm51, n513, 14 start
to increase to higher values~1–5 %! during the peak of the
B̃/B. Theq profile for this spectrum is broader both on ax
and on the edge@Fig. 36~c!#. The spectrum after the decay o

FIG. 36. ~a!–~d! are theq profiles for the spectrums~a!–~d! in Fig. 35,
respectively. The thicker profile is the cycle-averagedq profile.
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edge-resonant modes begins to return to the typical stan
RFP spectrum with the core dominant modem51, n523.
Figures 35~d! and 36~d! show the spectrum and theq profile
at a time during the injection phase.

VI. SUMMARY AND DISCUSSION

We have investigated the full nonlinear dynamics
OFCD, a form of ac helicity injection, using 3D nonline
MHD computation. Three-dimensional plasma fluctuatio
and instabilities in large part determine the effectiveness
OFCD and its influence on confinement. The full dynam
are compared with results from 1D models, previously inv
tigated. In a classical 1D plasma, devoid of nonaxisymme
fluctuations, OFCD generates a steady-state current con
to within a resistive skin depth of the plasma surface. T
current is generated by the cycle-averaged dynamo-
(V003B00) i effect from the axisymmetric velocity and mag
netic field oscillations. We also find that, at large amplitu
of the oscillating voltages, transient fields are generated
persist for about a resistive diffusion time.

The effect of the fluctuations, or magnetic relaxation, h
been incorporated in a 1D model by assuming that theJi /B
profile maintains a preferred radial shape. This model rev
the dependence of OFCD dynamics on key parameters
as Lundquist number and frequency. Generally, these 1D
sults are consistent with those obtained from 3D compu
tion. Of particular interest is that the oscillation in the to
toroidal plasma current decreases with Lundquist numbeS.

The edge current driven classically, excites plasma fl
tuations which then drive current in the core through
dynamo effect that arises from nonaxisymmetric velocity a
magnetic fluctuations. That is, magnetic relaxation causes
current to penetrate to the core. This physics is captu
through 3D MHD computation. We find that OFCD indee
can sustain the plasma current steadily in the absence of
electric field. There are two causes for concern for the te
nique. First, the symmetric plasma quantities, such as
toroidal current, experience very large oscillations. For
ample, atS5105 the current oscillates by 100%, a valu
likely unacceptable in an experimental plasma. However,
find that the current oscillation decreases to about 50%S
553105, consistent with the prediction of the 1D relaxe
state model that oscillations scale asS21/4. Thus, at the
higher S values of experiments or a reactor, the current
cillation may be acceptably small. We have also optimiz
OFCD with regard to frequency and other parameters.
expected, the optimum frequency is one that is sufficien
low to permit relaxation to occur and sufficiently high th
the oscillation in the total current is minimized.

Second, plasma fluctuations~and transport! can be af-
fected by OFCD. The OFCD dynamics is complex. The p
files of the mean fields~such asJi /B) and the fluctuations
vary widely throughout a cycle. TheJi /B profile varies from
hollow to peaked within a cycle. The profiles are such t
the helicity dissipation is higher than for conventional cu
rent sustainment by a dc toroidal electric field. Hence,
helicity injection rate for an OFCD-sustained plasma
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greater than that for standard Ohmic plasmas. We iden
two parts of the OFCD cycle. During the helicity injectio
phase, the current density profile peaks and the tearing m
dynamo drives current in the core~transporting current from
edge to the core!. The fluctuation level is roughly equal t
that of the standard RFP. During the helicity ejection pha
new global modes appear that are resonant at the extr
plasma edge. These modes produce a ‘‘dynamo’’ effect
suppresses current everywhere. A linear stability analy
shows that these modes are unstable in plasmas with st
field reversal~large, negative toroidal magnetic field at th
plasma surface!. The instability is suppressed in highS plas-
mas where the reversal is weak. Clearly, investigations at
higher S values, beyond the scope of the present compu
tion, is needed.

An area for further study is optimization of OFCD wit
the aim of providing current drive with minimal tearing fluc
tuations. For example, is a steady-state RFP possible wit
a core plasma current and the attendant need for core
tuations? Another area of future research is the use of OF
for current profile control, rather than sustainment.
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